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SUMMARY OF WORK ACCOMPLISHED DURING FIRST THREE QUARTERS OF PROJECT 

Initially, the equations of motion of the Reduced Problem of Four Bodies were formulated, 

These equations contain, as special cases, the equations which describe the reduced or 

elliptical three-body problem, the restricted (circular) four-body problem, and the restricted 

(circular) three-body problem. Following this, conditions under which the forcing function 

of the reduced four-body problem i s  periodic, were determined. Specifically, a necessary 

and sufficient condition for the forcing function to be periodic i s  that the periods of the 

two fundamental elliptical motions - Moon about the Earth, and Earth - Moon barycenter 

about the Sun - be commensurable. Finally, the existence of periodic solutions in the 

elliptical four-body problem about the libration points of the restricted three-body problem 

was proven for sufficiently s m a l l  values of the parameter p . Furthermore, symmetry argu- 

ments were used to prove the existence of a symmetric periodic solution about the collinear 

libration points of the restricted four-body model, and, under added assumptions, of the 

elliptical fwr-body model. 

Details of these results are described in  the First, Second and Third Quarterly Reports, 

Contract NAS 5-9169, Goddard Space Flight Center, 1965-1966. 

During the fourth quarter of the project, work was begun to apply the Birkhoff rate-of- 

growth concept to study motion near periodic trajectories of time-dependent Hamiltonian 

systems. This w i l l  enable us to obtain new qualitative information about motion i n  the 

reduced or elliptical three-body problem as well as i n  more general Hamiltonian systems. 

The preliminary analysis i s  discussed in detail in the following pages. 
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FOURTH QUARTERLY REPORT 

The equations of motion of the planar elliptic three-body problem may be written, c 1 , 

.. 1 3 1 ,  3U ( 
a Y  

y + 2 A  = 
l + e c o a t  

where 
+ j? ( x 2 + y 2 )  

1 - m  m u = -  + -  
*O 0 

U 
0 1  

These equations can be put into Hamiltonian form by introducing additional variables defined 

by u = & y  , 

v = j f - x  . 
We now may write ( 1 ) as 

2 = Hu (x,y,u,v ) 

9 = HV ( X,Y,U,V) 

6 =-Hx ( X,Y,U,V) 

G =-H (x,y,u,v) , 
Y 

where 
1 

H = +(U”+V”) + + ( x 2 + y p )  + ( U Y - X V ) -  - 1+ecos t ( x8y ) 

Expanding H about the L 

be the origin of coordinates, we obtain 

point, which without loss of generality, we w i l l  assume to 4 

H = H ( t )  + H (x,y,u,v,t) +... + H (x,y,u,v,t) +... , ( 2 )  
0 a n 

where Hn i s  a homogeneous polynomial of degree n in the variables x,y,u,v, with 

coefficients having period 2 71 in t . As H 

not consider it in  the sequel. An application of the following lemma allows us to eliminate 

the time dependence from H, . 

(t) plays no role in the analysis, we w i l l  
0 
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Let us represent a linear Hamiltonian system of dimension 2n with a periodic time depen- 

dence by 

\ i v =  A(t)w, A ( t  + 2  n )  = A ( t )  . 
Then there exists a canonical change of variables 

w = P( t ) z ,  P ( t  + 2  I T )  = P ( t )  , 
such that 

Bz , i =  

( 4 )  

( 5 )  
where B i s  a constant matrix, i f  the characteristic exponents associated with ( 3  ) are 

distinct. 

Proof 

By Floquet theory, [2 j, the fundamental matrix @(t )  of ( 3 ) with @ ( o )  = 2 can be 

represented as 

@(t)  = P(t )exp (Bt) , 
where 

1 
2 8  @ ( 2  n) I 

P ( t  + 2 n )  = P ( t )  

B = -  

and 

. 

It can then be verified that the change of variables ( 4 ) gives ( 5 ). We now demonstrate 

that ( 4 ) i s  a canonical change of variables. A sufficient condition for this i s  that P 

satisfy 

X ' J X  = J , (7) 

where ' denotes the transpose and where 

n 

As the set of matrices that. satisfy ( 7 ) form a group, it follows from ( 6 ) that it i s  sufficient 

to show that gt) and exp (9 t )  satisfy ( 7 ). 

From ( 3 ) we obtain 

-2- 
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d 
d t  - ( Q ' J B )  = Q ' J G  + G'JG = G'A 'JG + Q ' J A Q  

= a ' [ A ' J  + J A l G .  

Now as A ( t  ) i s  derived from a Hami It onian function, we have that 

A ( t )  = JS( t )  , 
where S i s  a symmetric matrix. Substituting (9) i n  ( 8 )  we obtain 

d - ( G ' J G )  = 0, d t  

andas G ( o )  = I , G ' J G  = J. 

To show that exp ( B t )  satisfies (7), we note that for any non-singular matrix S, 

exp et)  = S [exp ( S - l B S t )  IS'' . 
As the characteristic exponents of our system are distinct, i t  can be shown, [3 3, that 

there exists such an S which satisfies (7) and i s  such that 

S - l B S  = D, 

where D i s  diagonal. Furthermore, as we have a Hamiltonian system, the eigenvalues of 

D are hl ,  . . . , h , - h 1, . . ., - A  Thus, by the group property of canonical 
n n 

matrices, the proof has been reduced to showing that exp ( D t )  satisfies (7). This 

follows readily from the form of the eigenvalues of D. 

. 

By applying the linear, canonical change of variables 

w = P ( t ) S r  , 
where 

r '  = (P,, P a r  q,' q2 1 and w'  = (x,y,u,v) 

i t  follows readily from the above lemma that the equations defined by H take the form 

r = D r  + ... ( 10) 

Thus in the new variables we have 

+ h p  q 2 +  ... = hIP,9, 2 2  

-3- 
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Equations (10) are now integrable i f  term of degree two and higher are neglected. This 

linear approximation i s  good over some fixed finite time interval if we restrict ourselves to 

a sufficiently smal l  neighborhood of the L4 point. To improve on this approximation, we 

wi l l  apply a theorem of Birkhoff, [ 4  1 which w i l l  enable us to obtain better estimates by 

considering the nonlinear terms. 

Theorem 

Let the Hamiltonian H (x,y,t) of a dynamical system with an equilibrium point at the 

origin, be analytic in x and y, periodic in t of period 2 n, and represented by 

Let the 2n characteristic exponents associated with H be distinct and purely imaginary. 2 

As the system i s  Hamiltonian, they maybe represented as 

xl, *.., x , 'A,, ... - A  . 
n n 

Furthermore, let the exponents satisfy 

i + o  
n + l  m A 

for a l l  integers m 

-t m2% +...+ m An + m 1 1  n 

such that 
i 

Then there exists a canonical change of variables 

-4- 
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x = f v ( t 8  q , t )  = tv + * a *  
V 

v = l , . . . ,n,  

Yv = g v (  6 ,  % t )  = V"+ - 0 .  

where f 

efficients having period 2 8 in t , such tha t  t h e  Hamiltonian in t h e  new variables has 

and g, a r e  convergent power series in t h e  components of 6 and v with co- 
V 

where is a polynomial with constant coefficients of degree N if  N is even and 

degree N-1 if N is odd in the variables z = 6 q , and where H2( 6 ,  r),  t ) is 

a power series in  6 

w 1 

V -v v 
beginning with terms of degree N + 1. With % in this form, v8 vv ,  

the  Hamiltonian is said to be normalized up to order N .  

The  usefulness of this theorem is the following. If w e  a r e  studying solutions near t h e  

equilibrium point 5 = 77 = 0, then 

for t h e  moment. The equations then have the  form 

is of higher order than 2 1 and  is discarded 

k & 

v = l , . . . ,n .  

If w e  multiply the  first equation by q the  second by 5vf and add, i t  follows that 
V I  

v = l , . . . ,n. ( S V q v )  = 0, 
d 

d t  
- 

Thus, 77 = c (constant) so tha t  (4)  becomes integrable yielding - v  v V 

v = 1, ..., n. 
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If we restrict ourselves to a large finite t ime interval and a suitable region in  phase space 

i t  can be shown that the higher order terms previously truncated can be made smal l  so 

that (5) i s  a close representation to the actual solution i n  t h i s  region. By use of ( 3 ) 

approximate solutions to the original problem may be obtained. For precise statements 

along these lines see t 4  1 and E5 3. 

We w i l l  consider the case of n = 2 for notational convenience, and prove the theorem 

by successively introducing canonical changes of variables that normalize terms of degree 

3,4,. . . ,N respectively. Thus let H be normalized up to order S - 1. (We note that 

H 

Y 

4 

i s  already in normal form). 2 

We introduce a canonical change of variables defined by the contact transformation, ,4 2, 

k = 1,2, 

where V (  5, , ) has the form 

v +v*+vs+v4 = s 
1 

We attempt to choose c ( t )  so as to eliminate as many S !!l order terms as 
V1fVafV3 f v4 
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s 

possible from ( 13 ). The Hamiltonian, under change of variables ( 14 ), takes the form 

i n  the new variables 

L 
v l+va+v  + v  = s 

a 4  

+ ... . 
Vl WJ,-V4 

Collecting Sfb order terms in 6 q l  q2 in ( 16 ) and using ( 15 ) we obtain for a 

= c  ) 
V 

typical coefficient (c 
vl 8v a8V3 8v4 

d c  
-v 
d t  

+ C v [ A 1 ( v 1 - v 3 )  + A * ( v * - v 4 ) 1  + 9 V - 

We wish to make ( 17 ) as simple as possible by choosing c y  appropriately. From the 

can vanish only i f  v - hypothesis of the theorem A1 ( v l  - v3 1 + A2 (v2 - v 4 )  1 -v38  

If this is the case, we let - 
v2 - v4 

c v ( t )  = - $v(s lds + c 1 gV:s)ds ]t . 
0 

It follows that c ( t )  i s  periodic and ( 17 ) reduces to the constant 
V 

1 2n $;s)ds. . v 

0 
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-/- N -  

We note that such terms are of the form of products of 5 q 1 1  

the desired normal form. 

If A1 ( v, - v3 ) + X2 (v2 - v4 ) doesn't vanish, i t  follows from the hypothesis of the 

theorem that there exists a unique periodic c ( t)  such that ( 17 ) vanishes. Thus, such 

terms can be completely eliminated from the new Hamiltonian and the desired normal form 

i s  obtained. 

and e2q2 which are in 

V 

Summing up, we see that by a combination of algebraic manipulation involving polynomials 

whose coefficients are periodic and by integrating linear equations, we can obtain useful 

information about solutions near critical points of nonlinear Hamiltonian systems. To 

perform the operations required to obtain the normal form, a computer program w i l l  be 

written. 

-8- 
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